Andres Felipe Posada Moreno
  • Home
  • Experience
  • Publications
  • Research and Projects
  • Teaching
  • Blog

On this page

  • Research Overview
  • Related Publications

Applied AI

Deep Learning
Industry 4.0
Applied AI
Industrial applications of artificial intelligence across manufacturing, quality control, and transport domains.
Published

April 27, 2018

Research Overview

This research theme encompasses the application of AI and machine learning methods to real-world industrial problems across diverse domains, including manufacturing, quality control, and transport systems.

Key application areas include:

  • Manufacturing process optimization: Using invertible neural networks for machine parameter prediction in heat-setting processes and fused deposition modeling.
  • Quality monitoring: Applying Generative Adversarial Networks for non-destructive quality assessment in large-scale casting.
  • Neural network-based process modeling: Leveraging deep learning for high-dimensional data scenarios in industrial production.
  • Reinforcement learning: Developing simulation-as-a-service platforms and transfer learning approaches for robotic manipulation tasks.

Related Publications

  • Objectifying Machine Setup and Parameter Selection Using Invertible Neural Networks (2023) Müller, K., Posada-Moreno, A., Pelzer, L., Gries, T. — FAIM 2022 (Springer LNME) Details | DOI

  • Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks (2023) Pelzer, L., Posada-Moreno, A.F., Müller, K., Greb, C., Hopmann, C. — Polymers Details | DOI

  • Qualitätsüberwachung mit GANs als Alternative zur Angussprobe für den Großguss (2023) Weber, F., Yao, Y., Horbach, L., Posada Moreno, A.F., Bezold, A., Broeckmann, C. — Tagung Werkstoffprüfung Details | DOI

  • Neural-Network-Based Classification of Commercially Available Fish Fillets (2021) Bragantini, G., Posada-Moreno, A.F., et al. — Proceedings of Machine Learning Research Details

  • Simulation-as-a-Service for Reinforcement Learning Applications (2020) Scheiderer, C. et al. — Procedia Manufacturing Details | DOI

  • Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipulation Tasks (2020) Scheiderer, C., Mosbach, M., Posada-Moreno, A.F., Meisen, T. — CSCI Details | DOI

© 2025 Andres Felipe Posada Moreno. Licensed under CC BY-NC-SA 4.0.

 

Built with Quarto.