Andres Felipe Posada Moreno
  • Home
  • Experience
  • Publications
  • Research and Projects
  • Teaching
  • Blog

On this page

  • Abstract
  • Citation
  • Related Projects

Qualitätsüberwachung mit Generative Adversarial Networks als Alternative zur Angussprobe für den Großguss

paper-conference
Quality monitoring using Generative Adversarial Networks as an alternative to test coupons in large-scale casting.
Authors

Felix Weber

Yao Yao

Lutz Horbach

Andrés Felipe Posada Moreno

Alexander Bezold

Christoph Broeckmann

Published

January 1, 2023

Doi

10.48447/WP-2023-266

Abstract

This paper investigates the use of Generative Adversarial Networks (GANs) for quality monitoring in large-scale casting as an alternative to the traditional test coupon approach. The proposed method leverages GANs to model the expected quality characteristics and detect deviations, enabling non-destructive quality assessment in the casting process.

Citation

@inproceedings{weber2023qualitaetsueberwachung,
 author = {Weber, Felix and Yao, Yao and Horbach, Lutz and Posada Moreno, Andrés Felipe and Bezold, Alexander and Broeckmann, Christoph},
 booktitle = {Tagung Werkstoffprüfung 2023},
 date = {2023},
 doi = {10.48447/WP-2023-266},
 title = {Qualitätsüberwachung mit Generative Adversarial Networks als Alternative zur Angussprobe für den Großguss}
}

Related Projects

  • Applied AI

© 2025 Andres Felipe Posada Moreno. Licensed under CC BY-NC-SA 4.0.

 

Built with Quarto.